IB-96212, a Novel Cytotoxic Macrolide Produced by a Marine Micromonospora

II. Physico-chemical Properties and Structure Determination

LIBRADA M. CAÑEDO*, JOSÉ L. FERNÁNDEZ PUENTES and JULIA PÉREZ BAZ

Drug Discovery Division, Instituto Biomar S. A., 24231 Onzonilla, León. Spain

X-H. HUANG and K. L. RINEHART

Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801, U.S.A.

(Received for publication January 5, 2000)

IB-96212, is a new member of spiroketal containing macrolide class of fermentationderived natural products isolated from mycelial extracts of *Micromonospora* sp. The structure consists of a new aglycone which possesses a 26-membered macrolide ring system and of one deoxy sugar identified as L-rhodinose, this structure represents the first reported spiroketal macrolide natural product related to other macrolides, such as oligomycins, dunaimycins, citovaricin, rutamycin and ossamycin.

IB-96212 is a fermentation-derived natural product with cytotoxic activity isolated from *Micromonospora* sp. The taxonomy, fermentation, isolation and biological activities have been described in the preceding paper¹). Spectroscopic studies showed IB-96212 to have a spiroketal 26-membered macrocyclic lactone structure, related to oligomycins^{2,3} and homooligomycins^{4,5}).

In this paper the physico-chemical properties and structure elucidation of IB-96212 are described.

Structural Elucidation of IB-96212

IB-96212 (1) was isolated as a pale white crystalline powder, mp 165~166°C. The physico-chemical properties of 1 are summarized in Table 1. The molecular formula of IB-96212 (1) was established as $C_{54}H_{94}O_{16}$ on the basis of HRFAB-MS data [*m*/*z* 1021.6443 (M+Na)⁺, calcd. 1021.6439]. The IR spectrum indicated the existence of hydroxyl (3445 cm⁻¹) and carbonyl (1702 cm⁻¹) groups. The presence of conjugated diene system was also indicated by the IR (1641 cm⁻¹) and UV (λ_{max} 225 nm) spectra.

The ¹H and ¹³C NMR spectral data of 1 are shown in Table 2 and Table 3 respectively. The ¹³C NMR spectrum

demostrated 54 signals which were assigned to eleven methyls, eleven methylenes, twenty-nine methines and three quaternary carbons by DEPT and HMQC experiments.

Detailed analysis of the ¹H-¹H COSY experiment proved the partial structures shown in Fig. 2, most of the protons

Table	1.	Physico-chemical	properties	of
IB-9	9621	2.		

Appearance	Pale white crystalline powder
Molecular formula	$C_{54}H_{94}O_{16}$
HRFAB-MS (M+Na) ⁺	1021.6443 (Calcd; 1021.6439)
MP (°C)	165-166
$[\alpha]_{D}^{25}$	- 42.27° (c 0.22, CHCl ₃)
UV λ_{max} nm	225
IR v _{max} (KBr) cm ⁻¹	3445, 1702, 1641
TLC ^a Rf value ^b	0.4
HPLC (Rt, minutes) ^c	3.6

a Silica gel 60 F₂₅₄, Merck

b Solvent : CHCl₃-MeOH (9:1)

c Resolve C18 radial pack cartridge (10 μ); mobile phase: MeOH-H₂O (92:8); flow rate: 2 ml/min.; detection: 225 nm

		1		2		1	L	2
position	δ _H [int mult, J (Hz)]			position	δ _H [int mι		lt, J (Hz)]	
1	•				33	3.52	(1H, m)	3.55 (1H, m)
2	5.80	(1H, d, 15.5)	5.80	(1H, d, 15.5)	34	1.35	(1H, m)	1.37 (1H, m)
3	674	(114 ad 10.5, 15.5)	6 75	(14 dd 10.0 15.5)	35	1.68	(1H, m) (3H t 7 5)	1.70 (1H, m) 0.95 (3H t 7 5)
<u>л</u>	2 37	(111, dd, 10.3, 15.3)	2 15	(111, dd, 10.0, 15.5)	36	1 1 3	(3H, 1, 7.5)	1.14 (3H d 65)
5	3.67	(111, 00, 0.5, 10.0)	2.45	(111, 00, 0.0, 10.0)	37	0.77	(3H, d, 7.0)	0.85 (3H d 7 0)
6	1 73	(111, 0, 9.0)	1 75	(111) (1H m)	38	1 40	(1H m)	1.45 (1H m)
0	1.75	(111, 111)	1.75	(111, 11)	50	1.40	(111, 11) (1H, m)	1.49 (111, m) 1.59 (1H m)
7	4.02	(14 4 9 0)	3.04	(14480)	30	1.04	(111, 11) (111, 11)	1.35 (111, m) 1.35 (1H m)
/	4.02	(11, 0, 9.0)	3.94	(111, 0, 8.0)	59	1.42	(111, 11) (114, m)	1.55 (1H, m)
Q	262	(14 4 9 0)	3 67	(14)	40	0.01	(111, 11) (3H + 7 0)	0.88 (3H + 7.0)
0	3.54	(111, 0, 9.0)	3.62	(111)	- 1 0 //1	0.91	(3H, d, 6, 5)	0.08 (3H + 6.5)
10	1.07	(111)	3.05 4.14	(111)	41	1.25	(1H m)	1.25 (1H m)
10	4.07	(111, ud, 4.5, 8.5)	4.14	(111, 0, 0.5)	42	1.25	(111, 11) (111, 11)	1.25 (111, m) 1.45 (1H m)
11	3 16	(14)	3 50	(11)	13	3.68	(111, 11) (111, m)	3.80 (1H m)
12	5.40	(11)	5.50	(111)	45	1.08	(311, 11)	1.08 (3H)
12	3 78	(1H dd 15 65)	3 78	(1H broad s)	44	0.75	(3H, d, 0.5)	0.78 (3H 4 7 0)
1.7	1.82	(111, ud, 1.5, 0.5)	1.95	(111, 010au s)	4J 46	0.75	(3H, d, 7.0)	0.73 (3H, 4, 7.0)
14 .	1.02	(111, 111) (111, m)	2 10	(111, 111)	40	0.92	(311, 0, 7.0)	0.95 (311, 0, 7.0)
15	7 10	(111, m) (111, m)	2.10	(111, 111)	47	0.78	(311, 0, 0.0)	0.60 (311, 0, 0.0)
16	5 12	(111, 111) (111, 114) $(111, 114)$ $(111, 114)$	5.45	(111, 11) (111, ddd 3.5, 10.5, 14.5)	19	0.82	(34 4 7 0)	083 (34 4 7 0)
10	5. 4 2	(111, ddd, 5.5, 10.5, 14.5)	6.01	(111, 000, 5.5, 10.5, 14.5)	40 5 OH	1 21	(JH, 0, 7.0)	0.85 (511, u, 7.0)
19	6.01	(111, dd, 10.5, 14.5)	6.08	(111, 00, 10.0, 14.5)	7 01	4.21	(111, 3)	
10	5.16	(111, dd, 10.5, 14.5)	5.18	(111, 00, 10.0, 14.5)	0.04	4.50	(11, 5) (11, c)	
20	2.10	(111, dd, 10.0, 14.5)	2.10	(11, 00, 10.5, 14.5)	10 OU	4.50	(11, 3)	
20	1 49	(111, 01, 10.0)	1.46	(111, 00, 10.0)	10-011	4.50	(11, 0, 4.5)	
21	1.40	(111, 111)	1.40	(111, 111)	11-011	5.55	(111, 5)	
22	0.02	(1H, m)	1.05	(1H, m)	12 011	2 75	$(1 \mathbf{H}_{a})$	
	1.58	$(1\Pi, \Pi)$	1.02	(1H, H)	12 - 0π	5.75	(11, 5)	
22	2.02	(111, 111) (111, 4, 10, 5)	2.06	(111, 111)	12 01	1 12	(14465)	4.24 (1U broad a)
23	1.05	(1H, u, 10.5)	1.03	(1H, u, 10.5)	13-0H	4.45	(1H, 0, 0.5)	4.24 (1H, bload S) 3.40 (1H 4.64)
24	1.95	(11, 11)	4.00	(111, 111) (111, 114, 155, 11, 5)	42 OH	2 20	(11, 0, 0.0)	3.40 (111, 0, 0.4)
25	1 75	(111, 00, 5.0, 11.5)	4.90	(111, 00, 5.5, 11.5)	43-UH 17	5.59	(1H, 0, 0.0)	5.45 (III, 0.0)
20	1.75	(111, 111)	1.70	(111, 111)	1 2'	1 12	(111, uu, 1.3, 7.7)	
21					2	2.00	(111, 11)	
28	1.40	(1H m)	1.40	(1H m)	2'	2.09	(1H, ul, 2.0, 0.5)	
20	1.40	(111, 111) (114, m)	1.40	(11, 11) (1H m)	5	1.40	(11, 11)	
20	1.75	(111, 111) (114 m)	1.77	(111, 111) (111 m)	<i>1'</i>	2 1 5	(14 cm, 50)	
47	1.49	(11, 11) (11, m)	1.50	(111, 111) (111 m)	4	5.15	(in, sep, 5.0)	
30	1.05	(111, 11) (111, m)	1.00	(111, 111) (111, m)	5'	2 21	(11 da 25 6 0)	
21	1.49	(11, 11)	1.52	$(1\Pi, \Pi)$	3 C'	3.31	(1H, 0q, 2.5, 6.0)	
27	3.82	(111, u, 10.3)	J.84	(III, 0, IV.V) (III, m)		1.24	(311, 0, 0.0)	
52	1.00	(11, 11)	1.08	(In, m)	4 -OH	4.04	(11, 0, 5.0)	

Table 2. ¹H NMR assignments of IB-96212 (1) and aglycone (2) in acetone- d_6 .

were assigned. The remaining protons and carbons were assigned by TOCSY and HMBC experiments.

The HMBC experiment of 1 showed the long range couplings of 2-H, 3-H and 25-H to C-1, of 5-H to C-7, of 5-OH to C-5, C-4 and C-6, of 11-H to C-9, C-12, C-13 and C-38, of 40-CH₃ to C-38, of 12-OH to C-12, C-11, C-13 and C-38, of 13-H to C-15 and 41-CH₃. Furthermore, the HMBC experiment also showed the long range couplings of

20-H to C-22, of 23-H to C-21, of 26-H, 28-H, 29-H and 46-CH₃ to C-27, of 34-H, 31-H, 35-CH₃ and 48-CH₃ to C-33. These correlations confirmed the linkages of the partial structures proved by ¹H-¹H COSY. And the presence of 26-membered macrocyclic lactone moety in **1** was established as Fig. 2. These results were also implied by FAB-MS fragmentation ion at m/z 885 corresponding to the aglycone fragment peak originated from the loss of sugar unit from

	1	2		1	2	
position	δ _c		position		δ _c	
1	165.2	165.3	28	33.1	32.8	
2	122.7	122.5	29	28.8	28.8	
3	150.7	150.7	30	31.7	31.7	
4	42.5	42.0	31	74.1	74.2	
5	80.8	80.6	32	39.9	39.9	
6	36.4	36.5	33	73.6	73.6	
7	77.5	78.6	34	28.8	28.8	
8	83.5	74.0	35	9.7	9.7	
9	71.6	73.0	36	18.4	18.2	
10	69.1	71.0	37	4.5	4.9	
11	70.9	72.1	38	38.0	38.4	
12	76.7	77.5	39	17.2	17.2	
13	68.0	70.6	40	15.2	15.2	
14	34.0	34.3	41	15.0	15.1	
15	39.2	39.2	42	46.9	46.7	
16	131.6	131.5	43	65.3	65.4	
17	133.1	133.2	44	24.8	24.8	
18	132.1	132.3	45	6.7	6.5	
19	137.5	137.5	46	12.4	12.3	
20	41.8	41.2	47	18.2	18.1	
21	33.1	33.1	48	9.8	9.8	
22	32.2	31.8	1′	104.4		
23	68.9	68.7	2′	31.0		
24	36.7	37.0	3'	31.9		
25	76.9	76.6	4′	71.4		
26	38.7	38.8	5'	77.6		
27	99.1	99.1	6′	18.7		

Table 3. ¹³C NMR assignments of IB-96212 (1) and aglycone (2) in acetone- d_6 .

Fig. 1. Structures of IB-96212 (1) and aglycone (2).

the molecule.

The geometries of C-2, C-16 and C-18 were proved to be all *E* by the coupling constants of $J_{2,3}=15.5$ Hz, $J_{16,17}=14.5$ Hz and $J_{18,19}=14.5$ Hz, respectively.

The presence of the sugar was evident by the signal at 4.5 ppm in the ¹H NMR and by the signal at 104 ppm in the ¹³C NMR spectrum corresponding to the anomeric proton and carbon respectively. The sugar sequence of a trideoxyhexose was also established using ¹H-¹H COSY and ¹³C-¹H long range couplings. The sugar moiety was determined to be L-rhodinose, as a result of the ¹H and ¹³C NMR chemical shifts and by analyzing the coupling constant between 5'-H and 4'-H, this constant is very small

(J=2.5 Hz) which supports the equatorial (4'-H) - axial (5'-H) configuration^{6,7)}. The coupling constant values (J=7.7 and 1.5 Hz) for the anomeric proton $J_{1',2'ax}$ and $J_{1',2'eq}$ and the chemical shift of the anomeric carbon at δ 104.4 suggested that the sugar is attached to the aglycone by a β -glycoside bond^{6,7)}. On basis of NMR data, the sugar was determined to be β -L-rhodinose, the chemical shifts and coupling constants were compared with the reported values of L-rhodinose containing antibiotics, cirramycin F-1⁶⁾ and amicenomycins A and B⁷⁾. The long range coupling of 1'-H (anomeric proton) to C-8 (δ 83.5) in the HMBC experiment showed the linkage of this sugar to the macrocyclic lactone ring at C-8.

The hydrolysis of 1 using aqueous 15% H₂SO₄ at reflux for 3 hours afforded the aglycone 2 which was purified by column chromatography. The FAB-MS spectrum showed m/z 885 (M+H)⁺, this molecular weight of 2 suggested a loss of sugar compared to 1 and the structure of the aglycone 2 was confirmed by various NMR experiments including HMQC and HMBC (the ¹H and ¹³C NMR data are shown in Table 2 and Table 3 respectively).

Experimental

General Procedures

Optical rotation was measured with an Optical Activity AA-10 polarimeter. Melting point was determined with a Mettler FP 81 mp apparatus and was uncorrected. IR and UV spectra were recorded on a Perkin Elmer 881 spectrophotometer and a Perkin Elmer Lambda 15 double beam spectrometer, respectively. NMR spectra were acquired on a Varian Unity 500 NMR spectrometer (500 MHz for ¹H, 125 MHz for ¹³C) and Bruker DRX spectrometer (400 MHz for ¹H, 100 MHz for ¹³C). Chemical shifts are reported in ppm referenced to the (CH₃)₂CO peak at 2.05 ppm for ¹H and 29.8 and 206.2 ppm for ¹³C. FAB-MS and HRFAB-MS were measured with a VG AUTOSPEG spectrometer.

Acknowledgments

The authors are grateful to Prof. José M^a MIGUEL DEL CORRAL for NMR spectroscopy. Thanks are due to Mr. José

ANTONIO ALONSO GARCÍA for technical assistance.

References

- FERNÁMDEZ-CHIMENO, R. I.; L. CAÑEDO, F. ESPLIEGO, D. GRÁVALOS, F. DE LA CALLE, J. L. FERNÁNDEZ-PUENTES & F. ROMERO: IB-96212, a novel cytotoxic macrolide produced by a marine *Micromonospora*. I. Taxonomy, fermentation, isolation and biological Activities. J. Antibiotics 53: 474~478, 2000
- CARTER, G. T.: Structure determination of oligomycins A and C. J. Org. Chem. 51: 4264~4271, 1986
- LAATSCH, H.; M. KELLNER, G. WOLF, Y.-S. LEE, F. HANSSKE, S. KONETSCHNYRAPP, U. PESSARA, W. SCHEUER & H. STOCKINGER: Oligomycin F, a new immunosuppressive homologue of oligomycin A. J. Antibiotics 46: 1334~1341, 1993
- 4) YAMAZAKI, M.; T. YAMASHITA, T. HARADA, T. NISHIKIORI, S. SAITO, N. SHIMADA & A. FUJII: 44-Homooligomycins A and B, new antitumor antibiotics from *Streptomyces bottropensis*: Producing organism, fermentation, isolation, structure elucidation and biological properties. J. Antibiotics 45: 171~179, 1992
- KIM, H. S.; S. B. HAN, H. M. KIM, Y. H. KIM & J. J. LEE: 41-Demethylhomooligomycin B, a new immunosuppresant antibiotic from *Streptomyces ostreogriseus*. J. Antibiotics 49: 1275~1277, 1996
- 6) SAWADA, Y.; T. TSUNO, T. MIYAKI, T. NAITO & T. OKI: New cirramycin-family antibiotics F-1 and F-2: Selection of producer mutants, fermentation, isolation, structure elucidation and antibacterial activity. J. Antibiotics 42: 242~253, 1989
- 7) KAWAMURA, N.; R. SAWA, Y. TAKAHASHI, T. SAWA, N. KINOSHITA, H. NAGANAWA, M. HAMADA & T. TAKEUCHI: Amicenomycins A and B, new antibiotics from *Streptomyces* sp. MJ384-46F6. J. Antibiotics 48: 1521~1524, 1995